x2y22F3x + y2k + 1x + y2k + 1ab/2a0 +1a1 +1a2 +1a3 +1a4a0 +1a1 +1a2 +1a3 +1a4nk/2p2x2pp − 211 − x11 − x20 ≤ i ≤ m0 < j < nP(i , j)x2ypi = 1qj = 1rk = 1aijbjkcki1 + 1 + 1 + 1 + 1 + 1 + 1 + x2∂x2 +2∂y2|φ(x + iy)|2 = 0222xt1dttDdxdyf(x) =1/3if 0 ≤ x ≤ 12/3if 3 ≤ x ≤ 40elsewherek timesx + ⋯ + xyx2p primef(p) =t > 1f(t)dπ(t){k a'sa, … , a ,l b'sb, … , bk + l elements} abcdefgh0ijkldetc0c1c2cnc1c2c3cn + 1c2c3c4cn + 2cncn + 1cn + 2c2n> 0yx2x3141592 + πxzdcyaby3